

Fig. 4. The unit-cell packing.
standard MOPAC program (QCPE No. 464). The energy was minimized with respect to all geometrical variables. The calculations showed that the conformation obtained from $\varphi=-130^{\circ}, \nu=90^{\circ}$ has lowest energy, but the differences between the energies for all calculated conformers do not exceed $1 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Therefore, it is probable that this conformation is the one observed in solution.

The four molecules in the unit cell (Fig. 4) are packed in such a manner that two molecules with conformation (I) are almost seized by two molecules with conformation (II). As is clear from Fig. 4, different conformations of both pairs of the molecules result in a compact packing within the unit cell.

All investigations were performed within the framework of the Polish Ministry of Education program RP.II. 10 .

References

Burkert, U. \& Allinger, N. L. (1982). Molecular Mechanics, ACS Monogr. No. 177. Washington, DC: American Chemical Society.
Chmielewska, B. (1983). Pharmazie, 38, 872-873.
Chmielewska, B. (1984). Pharmazie, 39, 259-262.
Dewar, M. J. S. \& Thiel, W. (1977). J. Am. Chem. Soc. 99, 4899-4906, 4907-4917.
Kwiatkowski, W. \& Karolak-Wojciechowska, J. (1990). Acta Cryst. C46, 913-915.
Kwiatkowski, W. \& Karolak-Wojciechowska, J. (1991). Acta Cryst. C47, 1978-1980.
Kwiatkowski, W. \& Karolak-Wojciechowska, J. (1992a). Acta Cryst. C48, 204-206, 206-208, 678-680.
Kwiatkowski, W. \& Karolak-Wojciechowska, J. (1992b). In the press.
Kwiatkowski, W., Karolak-Wojciechowska, J., Obniska, J. \& Zejc, A. (1990). Acta Cryst. C46, 108-112.
Lange, J., Rump, S., Galecka, E., Ilczuk, I., LechowskaPostek, M., Rabsztyn, T., Szymańska, T. \& Walczyna, K. (1977). Pharmazie, 32, 82-84.

Lange, J., Rump, S., Ilczuk, I., Lapszewicz, J., Rabsztyn, T. \& Walczyna, K. (1977). Pharmazie, 32, 579-581.
Łapszewicz, J., Lange, J., Rump, S. \& Walczyna, T. (1978). Eur. J. Med. Chem. 13, 465-468.
Łucka-Sobstal, B., Zejc, A. \& Obniska, J. (1977). Arch. Immunol. Ther. Exp. 25, 285-289.
Sheldrick, B. (1990). SHELXTL-PC. Version 4.1. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.
Vicković, I. (1988). J. Appl. Cryst. 21, 987-990.
Zejc, A. \& Obniska, J. (1984). Acta Pol. Pharm. 5, 529-533.
Zejc, A., Obniska, J., Chojnacka-Wójcik, E., Tatarczyńska, E. \& Wiczyńska, B. (1987). Pol. J. Pharmacol. Pharm. 39, 91-95.

Acta Cryst. (1992). C48, 1994-1996

Structure of a Phenylhydrazone of Diacetone Protected 3-Keto-glucose

By Cui Yi Qing, D. de Wit,* F. van Rantwijk, H. van Koningsveld and L. Maat \dagger
Laboratory of Organic Chemistry and Catalysis, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands

(Received 23 December 1991; accepted 3 March 1992)

Abstract

Z)-3-Deoxy-1,2:5,6-di- O-isopropylidene-3-phenylhydrazono- α-D-ribo-hexofuranose, $\quad \mathrm{C}_{18} \mathrm{H}_{24}-$ $\mathrm{N}_{2} \mathrm{O}_{5}, M_{r}=348.40$, monoclinic, $P 2_{1}, a=10.867$ (2),

^[* Present address: Agrotechnological Research Institute ATO-DLO, PO Box 17, 6700 AA Wageningen, The Netherlands. \dagger To whom correspondence should be addressed.]

$b=5.790(1), c=14.740(2) \AA, \beta=94.75(1)^{\circ}, V=$
$924.3(8) \AA^{3}, Z=2, D_{x}=1.26 \mathrm{gcm}{ }^{-3}, \lambda(\mathrm{Mo} K \alpha)=$
$0.71073 \AA, \mu=0.99 \mathrm{~cm}^{-1}, F(000)=372, T=293 \mathrm{~K}$,
$R=0.068$ for 2597 observed reflections. The title
compound possesses the Z configuration. The phenyl
ring is nearly coplanar with the furanose ring. The
gauche conformation around the $\mathrm{C}(14)-\mathrm{C}(8)$ bond
is in agreement with results obtained from NMR spectroscopy in solution. The dihedral angle $\mathrm{O}(4)$ -$\mathrm{C}(14)-\mathrm{C}(8)-\mathrm{O}(1)$ is $75.6(6)^{\circ}$.

Introduction. The synthesis of chiral compounds starting from carbohydrates is one of the research objectives of our laboratory. The easily available 1,2:5,6-di-O-isopropylidene- α-D-ribo-hexofuranos-3ulose (1) (Baker, Horton \& Tindall, 1976) is a versatile building block for this purpose and is obtained from natural D-glucose with known absolute configuration.

Compound (1) was converted by condensation with phenylhydrazine into a mixture of two compounds. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopic analysis revealed these to be the isomeric (Z)- and (E)-3-deoxy-1,2:5,6-di- O-isopropylidene-3-phenylhydra-zono- α-D-ribo-hexofuranose, (2) and (3), but did not provide further basis for configurational assignments. Therefore, a single-crystal X-ray analysis was performed which gave unambiguous proof for the Z configuration of the major isomer (2).

Experimental. Full experimental details of the preparation of (2) have been published (de Wit, Cui Yi Qing, van Rantwijk, Maat \& Kieboom, 1992). Compound (2) was isolated from the reaction mixture by crystallization from ethanol; m.p. 422$422.5 \mathrm{~K} ;[\alpha]_{\mathrm{D}} \mathrm{DO}^{\circ} \mathrm{C} 291^{\circ}(c=1$, ethanol).

A crystal of dimensions $0.30 \times 0.15 \times 0.15 \mathrm{~mm}$ was mounted on an Enraf-Nonius CAD-4 diffractometer. Lattice parameters were determined from the setting angles of 25 reflections ($10<\theta<13^{\circ}$). Intensity data were measured with $\omega / 2 \theta$ scans to $\theta_{\text {max }}=30.0^{\circ}$; index range $h-15$ to $15, k 0$ to $8, l 0$ to 20. Three standard reflections measured every 2 h showed no significant variation over the period of data collection. 3031 reflections were scanned, of which 2599 were considered observed $[I>1.0 \sigma(I)]$. No absorption correction was applied. The structure was solved using direct methods (MULTAN; Germain, Main \& Woolfson, 1971). H-atom positions, except methyl H atoms, were obtained from a difference Fourier map. Coordinates of all atoms (except methyl H atoms) were refined using fullmatrix least squares on F values; non-H atoms were assigned anisotropic thermal parameters and H atoms were given fixed isotropic parameters. The

Table 1. Fractional atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic temperature factors $\left(\AA^{2} \times 10^{3}\right)$ with e.s.d.'s in parentheses
U_{eq} is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

	x	y	z	$U_{\text {eq }}$
$\mathrm{N}(1)$	6235 (5)	10563 (12)	2593 (4)	50 (2)
$\mathrm{N}(2)$	7441 (4)	10957 (10)	2881 (3)	56 (2)
$\mathrm{C}(1)$	5620 (5)	12057 (12)	1983 (3)	58 (2)
C(2)	6191 (6)	13979 (13)	1649 (4)	68 (2)
C(3)	5514 (8)	15428 (16)	1048 (5)	84 (3)
C(4)	4294 (8)	14975 (18)	773 (5)	90 (3)
C(5)	3743 (7)	13038 (20)	1105 (5)	89 (3)
C(6)	4394 (5)	11570 (15)	1702 (4)	68 (2)
C(7)	7975 (5)	9475 (12)	3415 (3)	50 (2)
C(8)	9306 (5)	9658 (12)	3751 (3)	52 (2)
C(9)	8472 (6)	6440 (12)	4462 (4)	59 (2)
C(10)	7434 (5)	7323 (11)	3794 (4)	56 (2)
C(11)	6938 (5)	8018 (12)	5268 (4)	57 (2)
C(12)	6031 (6)	6997 (16)	5880 (4)	84 (3)
C(13)	7265 (7)	10518 (14)	5491 (5)	85 (3)
C(14)	10204 (5)	9486 (12)	3025 (4)	54 (2)
C(15)	10044 (6)	8403 (13)	1502 (4)	67 (2)
C(16)	10247 (7)	11612 (13)	2423 (5)	71 (2)
$\mathrm{C}(17)$	11271 (7)	7314 (20)	1270 (6)	115 (4)
C (18)	8951 (7)	7758 (26)	877 (5)	127 (5)
$\mathrm{O}(1)$	9522 (3)	7782 (10)	4374 (2)	66 (1)
$\mathrm{O}(2)$	8024 (4)	6617 (9)	5311 (3)	68 (1)
$\mathrm{O}(3)$	6436 (3)	7747*	4343 (2)	61 (1)
$\mathrm{O}(4)$	9816 (4)	7697 (8)	2404 (2)	58 (1)
O(5)	10193 (7)	10806 (11)	1549 (4)	129 (3)
* Parameter kept fixed during refinement.				

Table 2. Bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$

$\mathrm{N}(1)-\mathrm{N}(2)$	1.364 (7)	$\mathrm{C}(9)-\mathrm{O}(1)$	1.396 (8)
$\mathrm{N}(1)-\mathrm{C}(1)$	1.380 (9)	$\mathrm{C}(9)-\mathrm{O}(2)$	1.383 (7)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.384 (10)	$\mathrm{C}(10)-\mathrm{O}(3)$	1.427 (7)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.386 (11)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.510 (9)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.379 (12)	$\mathrm{C}(11)-\mathrm{C}(13)$	1.520 (11)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.380 (14)	$\mathrm{C}(11)-\mathrm{O}(2)$	1.429 (8)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.376 (11)	$\mathrm{C}(11)-\mathrm{O}(3)$	1.435 (6)
$\mathrm{C}(6)-\mathrm{C}(1)$	1.391 (8)	$\mathrm{C}(14)-\mathrm{C}(16)$	1.520 (10)
$\mathrm{C}(7)-\mathrm{N}(2)$	1.271 (8)	$\mathrm{C}(14)-\mathrm{O}(4)$	1.423 (7)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.493 (7)	$\mathrm{C}(15)-\mathrm{C}(17)$	1.539 (11)
$\mathrm{C}(7)-\mathrm{C}(10)$	1.505 (9)	$\mathrm{C}(15)-\mathrm{C}(18)$	1.490 (10)
$\mathrm{C}(8)-\mathrm{C}(14)$	1.510 (8)	$\mathrm{C}(15)-\mathrm{O}(4)$	1.432 (7)
$\mathrm{C}(8)-\mathrm{O}(1)$	1.429 (8)	$\mathrm{C}(15)-\mathrm{O}(5)$	1.402 (10)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.523 (8)	$\mathrm{C}(16)-\mathrm{O}(5)$	1.367 (9)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{N}(2)$	120.0 (6)	$\mathrm{O}(2)-\mathrm{C}(11)-\mathrm{O}(3)$	103.2 (4)
$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(7)$	117.2 (5)	$\mathrm{O}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	109.2 (5)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	121.9 (5)	$\mathrm{O}(2)-\mathrm{C}(11)-\mathrm{C}(13)$	110.7 (5)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	117.8 (6)	$\mathrm{O}(3)-\mathrm{C}(11)-\mathrm{C}(12)$	108.0 (5)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	120.2 (6)	$\mathrm{O}(3)-\mathrm{C}(11)-\mathrm{C}(13)$	111.9 (5)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	119.0 (6)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(13)$	113.3 (6)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	121.3 (8)	$\mathrm{C}(8)-\mathrm{C}(14)-\mathrm{C}(16)$	114.4 (6)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	119.0 (8)	$\mathrm{C}(8)-\mathrm{C}(14)-\mathrm{O}(4)$	109.2 (5)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	120.9 (7)	$\mathrm{O}(4)-\mathrm{C}(14)-\mathrm{C}(16)$	103.7 (5)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	119.6 (7)	$\mathrm{O}(4)-\mathrm{C}(15)-\mathrm{O}(5)$	105.4 (5)
$\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	122.5 (5)	$\mathrm{O}(4)-\mathrm{C}(15)-\mathrm{C}(17)$	108.0 (6)
$\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{C}(10)$	128.0 (5)	$\mathrm{O}(4)-\mathrm{C}(15)-\mathrm{C}(18)$	108.2 (6)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(10)$	109.5 (5)	$\mathrm{O}(5)-\mathrm{C}(15)-\mathrm{C}(17)$	108.6 (8)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{O}(1)$	105.2 (5)	$\mathrm{O}(5)-\mathrm{C}(15)-\mathrm{C}(18)$	111.2 (8)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(14)$	115.2 (4)	$\mathrm{C}(17)-\mathrm{C}(15)-\mathrm{C}(18)$	114.9 (7)
$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{C}(14)$	108.9 (5)	$\mathrm{C}(14)-\mathrm{C}(16)-\mathrm{O}(5)$	105.8 (6)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	108.7 (5)	$\mathrm{C}(8)-\mathrm{O}(1)-\mathrm{C}(9)$	113.0 (4)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{O}(2)$	113.3 (5)	$\mathrm{C}(9)-\mathrm{O}(2)-\mathrm{C}(11)$	110.7 (4)
$\mathrm{O}(2)-\mathrm{C}(9)-\mathrm{C}(10)$	105.2 (5)	$\mathrm{C}(10)-\mathrm{O}(3)-\mathrm{C}(11)$	108.1 (4)
$\mathrm{C}(7)-\mathrm{C}(10)-\mathrm{C}(9)$	103.1 (4)	$\mathrm{C}(14)-\mathrm{O}(4)-\mathrm{C}(15)$	108.9 (5)
$\mathrm{C}(7)-\mathrm{C}(10)-\mathrm{O}(3)$	114.0 (5)	$\mathrm{C}(15)-\mathrm{O}(5)-\mathrm{C}(16)$	112.4 (5)
$\mathrm{O}(3)-\mathrm{C}(10)-\mathrm{C}(9)$	104.4 (4)		

chirality was assigned from that of the starting material. Refinement of 262 variables converged to R $=0.068, w R=0.066(w=1)$ and $S=1.13$ for 2597 observed reflections (2599 minus two low-order reflections). The maximum shift/e.s.d. of the final cycle was 0.7 . The final ΔF syntheses had $|\rho|<$

$$
\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}
$$

$0.32 \mathrm{e} \AA^{-3}$. All calculations were performed on the Delft University Amdahl 470/V7B computer using XRAY72 (Stewart, Kruger, Ammon, Dickinson \& Hall, 1972). Atomic scattering factors are from XRAY72.

Discussion. Atomic coordinates are listed in Table 1* and bond lengths and bond angles in Table 2. Fig. 1 shows the atomic numbering used in this report. The hydrazono group can adopt two configurations: the Z and E configuration. From the NMR spectra it remains questionable which part represents the Z or the E configuration. Fig. 1 shows the crystalline compound to be the Z isomer. NMR spectroscopy of this crystalline compound gives, now, unequivocally the data for the Z isomer.

The angle $\mathrm{O}(4)-\mathrm{C}(14)-\mathrm{C}(8)-\mathrm{O}(1)$ is 75.6°. Thus, the position of the protons connected to $\mathrm{C}(14)$ and $C(8)$, respectively, is gauche. In solution, a coupling constant for these two protons of 2 Hz was found. This value also points to a gauche conformation. Apparently, the average conformation in solution resembles the conformation in the crystalline state. The phenyl ring is nearly coplanar with the furanose ring of the sugar: the maximum deviations from the least-squares plane defined by 13 atoms

[^1]

Fig. 1. View of the molecule showing the atomic numbering scheme. H atoms have been omitted for clarity.
$[\mathrm{C}(1), \mathrm{C}(2), \ldots \mathrm{C}(10), \mathrm{N}(1), \mathrm{N}(2)$ and $\mathrm{O}(1)]$ is $0.07 \AA$ [$\mathrm{C}(9)$]. The two isopropylidene groups are at either side of the least-squares plane.

References

Baker, D. C., Horton, D. \& Tindall, C. G. Jr (1976). Methods Carbohydr. Chem. 7, 3-6.
Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A27, 368-376.
Stewart, J. M., Kruger, G. J., Ammon, H. L., Dickinson, C. W. \& Hall, S. R. (1972). The XRA Y72 system-version of June 1972. Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland, USA.
Wit, D. de, Cui Yi Qing, van Rantwijk, F., Maat, L. \& Kieboom, A. P. G. (1992). Bull. Soc. Chim. Belges, 101, 307-312.

Structures of 4β-(Nitromethyl)-2 $\alpha, 6 \alpha$-diphenyl-4 α-piperidinol and 4β-(Nitromethyl)-2 $\beta, 6 \beta$-diphenyl-4 α-piperidinol

By P. Singh, S. G. Levine and K. Kasdorf
Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA

(Received 1 November 1990; accepted 25 March 1992)

Abstract

Nitromethyl)- $2 \alpha, 6 \alpha$-diphenyl- 4α piperidinol, isomer ($2 a$), $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}, M_{r}=312.37$, orthorhombic, $\quad C c m 2_{1}, \quad a=10.548$ (6),$\quad b=$ 19.590 (11), $c=7.729$ (3) $\AA, V=1597$ (1) $\AA^{3}, Z=4$, $D_{x}=1.30 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo K $\alpha)=0.71069 \AA, \quad \mu=$ $0.8 \mathrm{~cm}^{-1}, \quad F(000)=664, \quad T=298 \mathrm{~K}, \quad R=0.066$ for 796 reflections with intensities $\geq 3 \sigma(I)$. 4β-(Nitromethyl)- $2 \beta, 6 \beta$-diphenyl- 4α-piperidinol,

isomer (2b), $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}, M_{r}=312.37$, triclinic, $P \overline{1}$, $a=5.573$ (2), $b=11.852$ (6), $c=13.440$ (7) $\AA, \alpha=$ 68.42 (4) $, \quad \beta=89.46(4), \quad \gamma=79.82(3)^{\circ}, \quad V=$ 810.9 (6) $\AA^{3}, Z=2, D_{x}=1.28 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Мo $K \alpha)=$ $0.71069 \AA, \mu=0.8 \mathrm{~cm}^{-1}, \quad F(000)=332, T=298 \mathrm{~K}$, $R=0.0604$ for 2874 reflections with intensities $\geq 3 \sigma(I)$. Both isomers were isolated from the same reaction mixture. They differ only in the orientation

[^1]: * Lists of structure factors, anisotropic thermal parameters, H -atom parameters and bond lengths and bond angles involving H atoms have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55323 (28 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AL0535]

